Development of scenario as the key part of macroeconomic forecasting

Hikone September, 2010

Scenario problem

Implemented variant should meet one crucial requirement – the consistency of exogenous variables.

The rconsistency of exogenous variables (or the consistency of scenario) means that combination of exogenous variables is apriori feasible in the future. Although, interconsistency of scenario doesn't mean that scenario will necessary come true.

Scenario worked out by Russian Ministry of economic development, base variant (2a) (date of publication – October 1 of 2009)

Indicator	2007	2008	2009	2010	2011	2012
	actual		estimation	forecast		
World oil price, Urals, \$/barrel	69.3	94.4	57	58	59	60
World GDP growth, %	2.2	1.1	-1.82.7	0.6	2.6	2.8
Ruble/dollar exchange rate (annual average), rubles per one US dollar	25.5	24.9	32.7	33.9	34.8	36.4
Trade balance, billion US dollars	130.9	179.7	94.7	107.0	101.9	97.4
Crude oil and oil products export, million tons	370	361	368.2	367.1	366.4	364.8
Crude oil and oil products export, billion US dollars	187.6	248.8	153.2	155.4	157.8	159.8

Source: Russian Ministry of economic development

The easiest solution of scenario problem – implementation of scenario prepared by authoritative organization – is not a guarantee for interconsistency of exogenous variables

Proposed approach to scenario problem solution

The consistency of scenario should be based on interdependences established between:

- World GDP growth and world oil prices;
- World oil prices, volume of petroleum export and ruble/dollar exchange rate;
- Net profit of petroleum industry and ruble/dollar exchange rate.

5

1. World GDP growth and world oil prices matching

Exogenous variables for the step 1

Primary energy consumption

World primary energy consumption, thousand BTU per 1 dollar of GDP at constant 2000 prices

GDP of separate countries are converted at a constant prices via market exchange rates

BTU – British Thermal Unit, 1BTU = 1 055.05585 Joules

- primary energy consumption per unit of GDP for the world economy (and for majority of separate countries) is stably declining value;

- specific primary energy consumption for separate country can be represented as a function, where time and primary energy price are taken as exogenous variables;

-specific primary energy consumption in the context of different sources can be represented as function, where total specific primary energy consumption and energy prices ratios are taken as exogenous variables.

Regional breakdown

Countries share in world oil consumption in 2009, %

Crude oil importers

Crude oil exporters

Major oil exporters – OPEC, Russia, Canada, Mexico, Norway (oil exporters account for 64% of world oil supply and only 18% of world oil consumption).

Major oil importers – USA, EU-27, Japan, China, India, South Korea, rest of the world (oil importers account for 82% of world oil consumption and 36% of world oil supply).

Assumptions underlying world oil price forecast

1. In mid-term run world oil supply will cover world oil consumption (the usage of world oil extraction capacities will not raise to 100%).

2. World oil demand at every point of time is equal to world oil supply.

- P-world oil price,
- D world oil demand,
- S world oil supply.

Price elasticity of world oil demand is low enough, when world oil demand is estimated via world GDP and energy commodity price ratios. Hence, the demand of major oil consumers for oil imports is almost independent of world oil price. At the graph of demand and supply world oil demand in this case can be represented as vertical straight line.

Since the volume of world oil exports is known and equal to world oil imports, world oil price can be estimated via function of oil supply, where world oil price depends on world oil exports.

The assumption described above make possible to estimate world oil price on a basis of GDP growth rates of separate countries

The results of matching of world GDP growth and world oil price

Growth rates of world GDP, %

2010-2013 – forecast based on IMF projections

10

© Institute of Economic Forecasting

Equation for ruble/dollar exchange rate

Rur_usd = f(-brent*(ruex_oil+ruex_pet); +(us_gdp/us_gdp(-1))/(ru_gdp/ru_gdp(-1)))

© Institute of Economic Forecasting

3. Net profit of petroleum industry and ruble/dollar exchange rate matching

© Institute of Economic Forecasting

IEF RAS

Comparison of scenarios worked out by Russian Ministry of Economic development and Institute of Economic Forecasting in June, 2010

Rubble/dollar exchange rate

Exogenous variables equal for two scenarios	2010	2011	2012	2013
World GDP growth	4.0	3.9	4.0	3.7
CPI inflation, year-to-date	7.0	7.0	6.5	6.0

© Institute of Economic Forecasting

13

IEF RAS

Conclusion

The Bad:

• the solution of scenario problem shown above is a simplification of real economic interactions and a lot of them were left out of account;

• scenario consistency requires additional assumptions, which have essential influence on results.

The Good:

• we hope the implementation of proposed approach helps to clarify the procedure of scenario development and increases the consistency of exogenous variables.

Equations for energy intensity – USA case (energy intensity - BTU per 1 dollar of GDP at a constant 2000 prices)

15

IEF RAS

Estimation of world oil prices

Crude oil demand (demand for crude oil imports) is defined as a difference between oil importers consumption and production

Crude oil production in oil importing countries

$\frac{\text{Prod}_c}{t-\text{stat}} = \frac{8805 + 0.699 \text{*}\text{Prod}_c[-1] + 0}{(5.7)}$	0.088*brent(-1)*usd_rateind	adj. R-squared 0.96					
Demand for imports in oil importing countries Im_c=Con_c - Prod_c=Ex_p							
World oil price Brent =-102.3+0.066*Ex_p-0.87 us t-stat (-4.8) (10.1) (4	sd_rateind	adj. R-squared 0.86					
Natural gas price $P_Gas = 0.95+0.06*Brent$ t-stat (23.6) (10.2)		adj. R-squared 0.96					
Coal price P_Coal =13.1+0.95*Brent t-stat (3.7) (9.9)		adj. R-squared 0.77					
Index of nominal effective US dollar exchange rate							

 usd_rateind = 805.6-220.9*((GDP_world-GDP_usa)/GDP_usa)) - 553.8*(OilCon_usa/(OilCon_world-OilCon_usa))

 t-stat
 (14.9)
 (14.1)
 (-8.0)
 adj. R-squared 0.92

© Institute of Economic Forecasting

16 -