Development of Jidea 6 Current position of development Mitsuhito Ono Yasuhiko Sasai Toshiaki Hasegawa Takeshi Imagawa Kenichi Shiraishi ## Why - New Model? - A long time have passed since the current model (Jidea 5) was built and new data become available. - K. Shiraishi will present an application of Jidea 5. - Base year also changed from 1995 to 2000. ## Development stages - 1. Data preparations - 2. Estimations (cohr, dep,) ←We are now here. Model: program coding, final test, simulation... Annex: Problems of G program in building national economic model. ### 1-1. Data preparations Differences in data between old and new model - 1. Data coverage: Jidea 5 (1985-1998) vs Jidea 6 (1985-2004) - 2. Sector numbers: 100 vs 66 - 3. No Across method in building A matrix - 4. Capital Matrix: presented by Y. Sasai. - 5. Capital Stock: presented by T. Hasegawa in terms of JIDEAL ## 1-1-1. Data coverage - Original nominal and real data for the year 1985 to 1994 457 intermediate input sectors →reclassified into 66 sectors - FD: cohr, cogr, cobr, iprr(invr), ingr, venr, expr, impr adjr, coh, cog, cob, ipr(inv), ing, ven, exp, imp adj, - VA: wag, pro, dep, tax, oth, sub, wi (wi=outr totintr va) - Employment data, labour productivity, etc. - Macro data (real term: 2000 price, nominal term) derived from SNA. #### Japanese I-O data | 85 | 86 | 87 88 | 3 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | ∞ | 01 | 02 | 03 | 04 | |-------|--|--|---|---|---|--|--|--|---|---|---|---|---|---|---|--------------|---|--| | | Í | 86e8 | 37e88 | e89e | 90e | 91e | 92e9 | 93e9 | 4 6 | 95 e | %e | 97e | 98e | 99e | ∞ | 01e | 02e | <u>03e</u> | <u>04e</u> | 85195 | | | | 90195 | , | | | | 95 l | | | | | | | | | | | | | | | 90100 | | | | | <mark>95100</mark> | | | | | α | | | | | | 85195 | (90100/ | ⁽⁹⁰¹⁹⁵⁾ | 89e(9 | 20100/ | '90e) | (| 93e/9 | 5e)9 | 5100 | | 97e*9 | 95100 | | | 01e*9 | 95100 | | | | | 86e(90 | 100/90= | :) | 90100 |) | | (9 | 94e/ | 95e)9 | 25100 | | 98e*9 | 5100 | | 02e*9 | 95100 | 03e | 04e | | | 8 | 7e(90l0 | 0/90e) | | 91e(9 | 90100/9 | 10e) | (| 95100 | | | • | 99e* | 95100 | | | | | | | | 88∈ | (90100/ | /90e) | | (92e/9 | 95e)95 | | | %e*9 | 95100 | | | α | | | | | | E44 | 200 | | | E44.7 | 200 | | | I | E44 | 2000 | | | E44. | . 200 | 74 | 74 | 106 | 106 | | | | | | | 399 | | | | _ | 399 | | | OH? | | | /1 | | 186
73 | | 92 | | | | 99 | | | | | | | | | | 99 | | | | | | 32 | | | | 32 | | | | | 32 | | | | | 32 | | | | | | | 1 | 1 | 1 1 | | 1 | 1 | 1 | 1 | | _ | 4 | 4 | 4 | | 4 | 4 | | | | | 85195
85195
85195
511×
184 | 8505
8505
85195
85195
85195
86e(90
8
8
184
92 | 85l95
85l95
85l95
85l95(9000/90l95)
86e(9000/90e
87e(9000
88e | 8505
86e 87e 88e 89e
85095
85095(9000/9095) 89e(9
86e(9000/90e)
87e(9000/90e)
88e(9000/ | 85b 90c 86e 87e 88e 89e 90c | 85h 86e 87e 88e 89e 90e 91e 91e 91e 91e 91e 91e 91e 91e 91e 91 | 85b 86e 87e 88e 89e 90e 91e 92e 92e 92e 92e 92e 92e 92e 92e 92e 92 | 85b 86e 87e 88e 89e 90e 91e 92e 93e 9 85l95 90l00 90l00 85l95 90l00/90l95) 89e (90l00/90e) (93e/9 86e (90l00/90e) 90l00 (93e/9 87e (90l00/90e) 90l00 (92e/95e)95 | 85b 86e 87e 88e 89e 90e 91e 92e 93e 94e 85l95 90l00 90l00 90l00 90l00 90l00 (94e/87e(90l00/90e) 90l00 (92e/95e)95l00 85l1× 398 184 92 511× 399 184 99 | 85b 90b 91e 92e 93e 94e 95c 91e 92e 93e 94e 95c | 85b 90b 91c 95c | Solution | 850 900 910 950 | 85b 90b 91e 95c | 85b 90b 91e 95b 90c 96e 97e 98e 99e 00c 95i 95c 96e 97e 98e 99e 00c 96e 97c 98e 99e 00c 95i | 850 | S51 S6e 87e 88e 89e S0e S1e S2e | 86e87e88e89e 90e 91e 92e93e94e 95e 96e97e98e99e 00e 01e02e 03e 85i95 95i 95i 95i 95i 95i 95i 95i 95i 95i | The result is shown at Excel.DFL-onoxls. ## 1-1-2. Sector numbers (100→66) | liidea 6 | iidea 5 | |-------------------------------------|---------------------------------------| | 1 Agriculture, forestry and fishery | 1 Agriculture for crops | | | 2 Livestock raising and sericulture | | | 3 Agricultural services | | | 4 Forestry and logging | | | 5 Fishery | | 2 Metalic ores | 6 Metal ores | | 3 Non-metalic ores and coal | 7 Non- metal ores | | 4 Coal mining | 8 Coal and lignite | | 5 Petro & gas exploration | 9 Crude petroleum & gas | | 6 Food & tacacco products | 10 Food products | | 7 Beverages | 11 Beverages & tobacco | | | 12 Feeds and organic fertilizers | | 8 Textile products | 13 Fabricated textile products | | 9 Clothing | 14 Wearing and other textile products | | 10 Timber | 15 Timber and wooden products | | 11 Furniture | 16 Wooden & Metal Furniture, Fittings | | 12 Pulp & paper | 17 Pulp and paper | | 13 Printing & publishinging | 18 Publishing and printing | | 14 Inorganic basic chemicals | 19 Chemical fertilizer | | | 20 Inorganic basic chemicals | | 15 Petrochemical basic products | 21 Petrochemical basic products | | 16 Organic chemical products | 22 Organic chemical products | | 17 Synthetic resin | 23 Synthetic resin | | 18 Chemical fibers | 24 Chemical fibers | | 19 Final chemicals | 25 Medicaments | | 20 Medicine | 26 Final chemical products | | 21 Petroleum refinery products | 27 Petroleum refinery products | | 22 Coal products | 28 Coal products | | 23 Plastic products | 29 Plastic products | | 24 Rubber products | 30 Rubber products | | | 31 Leather & Fur products | | iidea 6 | | iidea 5 | |---|----------------|---| | 25 Glass & glass products | | Glass and glass products | | 26 Cement & cement products | | Cement and cement products | | 27 Pottery, tiles & earthenware | | Pottery, tiles and earthenware | | 28 Other ceramic, stone & clay products | | Other ceramic, stone and clay products | | 29 Iron & steel | 36 | Pig iron and crude steel | | | 37 | Steel bar and sheet | | | 38 | Steel castings and forging | | 30 Non-ferrous metals refinery products | 39 | Non-ferrous metals refinery products | | 31 Processed non-ferrous metal products | 40 | Processed non-ferrous metal products | | 32 Metal products for construction | | Metal products for construction | | 33 Other metal products | 42 | Heating equipment | | | | Other metal products | | 34 General Machineery | | General Machineery | | | | Machine Tool & Robot | | 35 Special industry machinery | | Special industry machinery | | 36 Other general machines & tools | | Other general machines and tools | | 37 Machinery for office & for vending | | Machinery for office and for vending | | | | Machinery for service | | 38 Household electric & electronic equipment | | Household electric & electronic equipment | | 39 Electronic computer & accessories devices | | Electronic computing equipment and accessories devices | | 40 Communication equipment | | Communication equipment | | 41 Electronic appliances & measuring equipment | | Electronic appliances & measuring equipment | | 42 Semi-conductor devices & integrated circuits | | Semi-conductor devices and integrated circuits | | 43 Electronic Parts | | Electronic Parts | | 44 Heavy electrical equipment | | Heavy electrical equipment, Generators, Motors, etc. | | 45 Electric illuminator, batteries & others | | Electric illuminator, batteries & other light electric app. | | 46 Motor vehicle | | Motor vehicle | | 47 Other vehicle | | Ships and repair of ships | | 48 Other transportation equipment | | Railway equipment | | | | Air plane & repair | | 40 Duna siniana C. Madinal inatus secondo at a | | Other transportation equipment | | 49 Precision & Medical instrument, etc. | | Precision instruments, Medical instrument, etc. | | 50 Miscellaneous manufacturing products | 6 4 | Miscellaneous manufacturing products | | iidea 6 | iidea 5 | |--|--| | 51 Construction | 65 Dwelling construction | | | 66 Other construction | | 52 Civil engineering public | 67 Civil engineering public | | 53 Civil engineering private | 68 Civil engineering private | | 54 Electric power | 69 Electric power | | 55 Gas & hot water supply | 70 Gas and hot water supply | | 56 Water supply & treatment | 71 Water supply | | | 72 Waste treatment | | 57 Trade | 73 Trade | | 58 Financial & insurance services | 74 Financial and insurance services | | | 75 Real estate agencies and rent | | | 76 House rent | | 59 Transportation services | 77 Railway transport | | | 78 Road transport | | | 79 Water transport | | | 80 Air transport | | | 81 Transportation related service & Storage | | 60 Communication & Broadcasting | 82 Communication | | | 83 Broadcasting | | 61 Public administration | 84 Public administration | | 62 Education, research & Medical service | 85 Education | | | 86 Research Institute | | | 87 Medical service, health and social security | | | 88 Social security service | | | 89 Other public service | | 63 Information service | 90 Advertising agencies | | | 91 News & Information service | | | 92 Renting and lessing | | | 93 Car & other machinery repair | | 64 Business Service | 94 Business Service | | | 95 Amusement service, films, theater, sports | | | 96 Restaurant | | | 97 Hotel | | 65 Personal Service | 98 Personal Service, Washing, Barber, etc. | | 66 Office Supply & N.E.C. | 99 Office Supply | | | 100 Not elsewhere Classified | ### 1-1-3. Po Across method in building A matrix ### Across has two functions: - 1. Correcting the discrepancies of data occurred by the difference in base year. - 2. Correcting the discrepancies caused by the definition changes of sectors or data sources change. ### Alternative way: - 1. To minimize the 2nd factor by reclassifying the sectors. - 2. For the first factor, to introduce base-year dummy variables: 85dm, 90dm and 95dm. - 3. To avoid the distortion in deflator caused by applying Across method. # 1-1-4. Capital Matrix - In Jidea 5, we only use capital matrix in the year of 1995. - However, in Jidea 6, we extended to the year of 1985, 1990, 1995 and 2000. - As a result, we expect to obtain better results of private investment functions. Cf: The capital matrix is used to convert data from ipr(r) to inv(r), vice versa. Detail will be explained by Y. Sasai. ## 2. - Consumption function ### Basic formula ``` Cohrpop(i) = f(dm85, dm90, dm95, pcdisincr, pdd(i)/cohdfl) In Jidea 5, "" Cohrpop(i) = f(dm85, dm90, dm95, timet) In Jidea 6, " log(Cohrpop(i)) = f(dm85, dm90, dm95, timet) log(Cohrpop(i)) = f(dm85, dm90, dm95, timet, timet₂) " log(Cohrpop(i)) = f(dm85, dm90, dm95, timet, timet₂, timet₃) y=a "b^x "c^x^2 "" 3 " "1 "" y=a "b^x "" 2 "y=a "b^x "" 2 "y=a "b^x " c^x^2 "" 3 "" ``` log(share(i)) = f(dm85, dm90, dm95, timet) given to log(share)=log(cohr(i))-log(totcohr) ### Function types | type | | dn85 | dn90 | dn95 | income | price | other . | |------|----------|-------------|------|------|------------|------------|--| | a | cohrpop | | | | pcdisinar | relpri | | | | lcompop | log(type a) | | | | | | | С | cohrpop | | | | pcdisinar | relpri(-1) | | | d | lcohrpop | log(typec) | | | | | | | е | cohrpop | | | | pcdisincr | | | | f | lcohroop | log(type e) | | | | | | | g | lcohrpop | | | | lpcdisincr | | lpdd | | h | cohrpop | | | | pcdisincr | | cohrpop(-1) without constant term | | i | cohrpop | | | | pcdisinar | | cohrpap(-1) | | j | Ishare | | | | | | time time ² | | k | Ishare | | | | | | time | | l | Ishare | | | | | | time time ² time ³ | | m | lcohr | | | | | | time | #### Estimation results summary | sector no. | | est. period | type | AR^2 | D.W. | |------------|---------------|-------------|------|--------|-------| | 1 | Agri,fisherv | 1985- 2004 | i | 0.92 | 2 77 | | 3 | Non- met ores | 1986-2004 | é | 0.83 | 1.67 | | | Coal | 1985-2004 | i | 0.92 | 2.94 | | 6 | Food prod | 1985-2004 | a | 0.80 | 1.62 | | 7 | Beverages | 1985-2004 | a | 0.90 | 2.29 | | 8 | _ | 1985-2004 | ٠ | 0.99 | 0.93 | | 9 | | 1985-2004 | i | 0.98 | 1.25 | | | Wood | 1985-2004 | á | 0.74 | 1.96 | | | Furniture | 1985-2004 | a | 0.63 | 1.39 | | 12 | Puln&paper | 1985-2004 | a | 0.85 | 1.58 | | 13 | Printing | 1985-2004 | g | 0.63 | 2.13 | | | Inorg chem | 1985-2004 | b | 0.96 | 1.35 | | | Organic chem | 1985-2004 | i | 0.22 | 1.80 | | 19 | | 1985-2004 | ā | 0.96 | 2.79 | | 20 | Medicine | 1985-2004 | m | 0.47 | 1.94 | | 21 | Petro prod | 1985-2004 | a | 0.88 | 1.86 | | | Coal prod | 1985-2004 | i | 0.78 | 2.42 | | | Plastic prod | 1985-2004 | ā | 0.68 | 1.23 | | | Rubber prod | 1986-2004 | i | 0.82 | *0.06 | | | Glass | 1985-2004 | е | 0.72 | 1.63 | | 26 | Cement | 1985-2004 | a | 0.90 | 2.07 | | 27 | Pottery | 1985-2004 | k | 0.64 | 1.11 | | 28 | Oth ceramic | 1985-2004 | l | 0.73 | 2.52 | | | Iron & steel | 1985-2004 | a | 0.61 | 1.95 | | 30 | | 1985-2004 | k | 0.45 | 2.49 | | 31 | Proce Nonfer | 1986-2004 | h | 0.98 | *0.39 | | 32 | Metal const | 1985-2004 | m | 0.31 | 2.24 | | 33 | Metal other | 1985-2004 | į | 0.93 | 1.73 | | | | | | 2 | | |------------|--------------|-------------|------|--------|-------| | sector no. | | est. period | type | AR^2 | D.W. | | 34 | Machine gene | 1985-2004 | a | 0.93 | 2.80 | | 35 | Machine spec | 1985-2004 | е | 0.82 | 1.73 | | 36 | Machine oth | 1985-2004 | С | 0.92 | 2.87 | | 37 | Mach office | 1985-2004 | g | 0.75 | 1.53 | | 38 | Mach hous el | 1985-2004 | ā | 0.96 | 1.60 | | 39 | Computer | 1985-2004 | b | 0.95 | 1.34 | | 40 | Communic eap | 1985-2004 | b | 0.91 | 1.65 | | 43 | Electro part | 1985-2004 | е | 0.82 | 2.06 | | 45 | Oth light el | 1985-2004 | a | 0.83 | 1.42 | | 46 | Motor vehicl | 1985-2004 | а | 0.64 | 1.25 | | 47 | Other vehicl | 1985-2004 | a | 0.74 | 1.63 | | | Other transp | 1985-2004 | a | 0.76 | 1.95 | | 49 | Precision | 1985-2004 | a | 0.69 | 1.98 | | | Mfg miscella | 1985-2004 | j | 0.71 | 1.19 | | 54 | Elec power | 1985-2004 | à | 0.87 | 1.39 | | | City gas | 1985-2004 | f | 0.61 | 0.49 | | | Water & sewa | 1986-2004 | h | 0.65 | *0.92 | | | Trade | 1985-2004 | С | 0.95 | 2.45 | | 58 | Finance | 1985-2004 | f | 0.74 | 0.51 | | | Transport | 1985-2004 | a | 0.96 | 0.84 | | | Communicat | 1985-2004 | a | 0.87 | 1.14 | | 61 | Government S | 1986-2004 | d | 0.74 | 1.04 | | 62 | Oth public S | 1985-2004 | a | 0.82 | 1.30 | | | Inform serv | 1985-2004 | m | 0.87 | 2.20 | | 64 | Buisnes serv | 1985-2004 | a | 0.83 | 1.28 | | | | 1986-2004 | d | 0.87 | 1.24 | | | Office suppl | 1985-2004 | j | 0.69 | 2.09 | ^{*:}h test Regarding Depreciation function, T. Imagawa will make presentation later. Annex: Problems of G program in building national economic model. A-1. Pho adjustment • For rho adjustment, the program is written to calculate $Y_{(n+s)}$ =a+b* $X_{(n+s)}$ +e*rho^s where n: year, s: term, e: error of last term of an observation data available, and parameter a and b are estimated by ols. This is acceptable if a and b are obtained by gls. But I have no idea if this is also understandable in case the parameters are obtained by ols. #### A-2. Input figures - When I try to register a figure 1.11111111111 in g/vam bank, the input figure recorded as 1.1111111641 in a bank. - I think this is because default value of G7 is 7 digit below decimal point. - I want to make the effectiveness of digits much more like 10 digit below decimal point. - As the number of our model sectors is 100, when aggregated the sector's figures from 1 to 100, there happens a discrepancy in the fourth or fifth digit below decimal point. That corresponds to 100 million yen order and I want to avoid any error in this digit. - The trouble became outstanding when we calculate @csum(cohr,1-100). - The result was 296.684906. When we added from cohr1 to cohr100 by excel, result was 296.684899. - The difference was 7 million yen. - When we applied this to output, @csum(outr,1-100)=1041211.5625 and excel result was 1041211.66187525. (unit: billion yen) - The difference became 99 million yen. #### A-3. Compare program When using compare program, some discrepancies occur. In compare program, ∑cohr □ =296.6854148778, however, in G, □ cum □ cohr,1-100 □ =296.685394287109. Why does this happen? How can we rectify the differences? #### A-4. Data expression When we want to know the recorded figures in detail, the following results are obtained by using type command under the current default. #### ty totoutr ``` totoutr 1985 689994.6 263436.7 280436.2 304391.8 320121.5 1990 339536.3 351716.4 371481.7 341314.1 329431.5 1995 329998.8 340711.5 353222.3 985385.6 1005107 2000 1041213158025859335096171200000000 -0.0001000 -0.0001000 -0.0001000 -0.0001000 -0.0001000 2005 -0.0001000 2010 -0.0001000 ``` Can we express the data much more precisely without overflow? #### A-5 - Soft Constraint - A-6. improvement of g: easy-to-handle - better exchangeability with excel file. - estimation by gls though H-L technique is available. - automatic coding system a replacing model.cpp coding. - □□ key board macro is desirable in G7 editor.