Introduction and History The Inforum Lift 2100 Model Applications – Modeling for the Long Run What is Next? Conclusions

Inforum Long-Run Modeling Lift 2100

 $Ron\ Horst^1$

¹Inforum - Department of Economics University of Maryland

Inforum Outlook Conference 2016

Outline

- Introduction and History
- The Inforum Lift 2100 Model
 - The LIFT Model
 - The DPM Model
- 3 Applications Modeling for the Long Run
 - Health Care Analysis
 - Technology and Climate Change Analysis
- What is Next?
 - Continued Model Development
 - Improved Calibration and Additional Applications
- Conclusions

Introduction to Inforum Long-Run Modeling Efforts

- Macro-Interindustry Model
 - Horizon extended beyond typical 25-30 years (to 2100)
 - Consistency of structural model particularly useful
- Potential Uses
 - Energy & Climate Change, Alternative Technologies
 - Government Budgets: Retirement and Health, Policy Analysis,
 Test Consistency of External Forecast Assumptions
 - Implications of health, demographics, immigration, population trends
- Results
 - Indicators of government debt, program sustainability, employment requirements, carbon emissions, water usage,

Previous Inforum Work

- Doug Nyhus. (2012). Long Term Health Spending and the Wider Economy.
 - Sponsored by Centers for Medicare and Medicaid Services
- Meade, Horst, Werling, et al. (2009). The Balancing Act: Climate Change, Energy Security, and the U.S. Economy.
 - Sponsored by Business Roundtable
 - Joint with Keybridge Research LLC

Previous Inforum Work (Continued)

- Doug Nyhus. (2008). Alternate Scenarios with LIFT to Help Frame the Sustainability of Medicare Entitlements.
- R. Monaco, J. Phelps. (1996). Health Care Spending and the Rest of the Economy: A Short Look at the Long Term.
- T. Dowd, R. Monaco, J. Janoska. (1996). Effects of Future Demographic Changes on the U.S. Economy: Evidence from a Long-Term Simulation Model.
- R. Monaco, J. Janoska, T. Dowd, C. Scandlen. (1996). LIFT 2050: A Framework For Making Very Long-term Economic Projections, with Illustrations.

Other Related Work

- Congressional Budget Office (standard to 2026, long-run to 2046): Federal revenue and expenditure, economics
- Social Security Administration (2090): Retirement transfers, demographic, economics
- Centers for Medicare and Medicaid Services (2090): Health Spending, Health Transfers
- Energy Information Administration (2040): Energy prices, imports / exports, etc.

LIFT - Long-run Interindustry Forecasting Tool

- 110 Commodities: Output, Prices, Final Demand
- 65 Industries: Employment, Productivity, Value Added, Equipment and Software Investment Purchasing
- 83 Personal Consumption Types
- 19 Private Construction Types
- Federal and State and Local Government: Consumption, Investment, Transfers, Revenue
- 110X110 A Matrix: Commodity by Commodity
- Full Macro Accounting: Real GDP, Inflation, Aggregate Productivity, Personal Income,

LIFT - Adjustments for the Long Run

- Began with standard LIFT model and forecast to 2040
- Extended A matrix to 2100 using trends
- Extended exogenous projections, e.g. transfer spending, energy prices
- Adjust exogenous and endogenous components to satisfy project assumptions and hit targets

Inforum Demographic Projections Model

- Population and composition key to many analyses and to projecting labor supply
- Sometimes employ Census or SSA projections, but need additional flexibility
- Currently configured with Census historical data population by sex and age
- Projections of Fundamentals (currently exogenous)
 - Fertility Rates (SSA Inforum)
 - Mortality Rates (SSA)
 - Immigration Distribution by Age/Sex (SSA)
- Recently used DPM to extend Census history with alternative total population specifications
 - Adjusted total net immigration each year to satisfy total population target
 - Results internally consistent for all age/sex categories

Analysis of Health Care in the Long Run

- Ongoing work with the Centers for Medicare and Medicaid Services
- Assess sustainability of Medicare and health expenditure trends
- Expand detail of basic economic assumptions and evaluate coherence

LIFT - Modeling Health Care in the Long Run

- Build a Base Case projection to 2090, calibrate to exogenous assumptions
 - Health
 - National Health Expenditure projections
 - Medicare Transfer Payments
 - Real GDP, GDP Inflation, Population, Labor Force, Unemployment
 - Other Exogenous: Energy Prices, Social Security Transfer Payments, Medicaid Transfers, Federal Spending, ...
- Construct alternative cases, review implications of alternative assumptions
 - Higher health care prices
 - Higher Medicare spending levels

Health Care Study Objectives

- Check consistency and feasibility of economic assumptions:
 - High spending in USA on health; average age continues to rise
 - ullet e.g. Nominal health spending grows at nominal GDP rate +1%
 - Health industry productivity growth slower than average
 - Implies rising health shares of GDP and employment.
 Sustainable?
- Werling, Keehan, Nyhus, Heffler, Horst, Meade. (2014) The Supply Side of Health Care
 - Determined economy-wide requirements of satisfying health care demand
 - This project considers supply requirements from all industries
 - Could be used to assess sustainability

Lift Analysis of Technology and Climate Change

- What policies could encourage development of technologies that limit emissions?
- Considered various levels of carbon taxation
- Considered advanced technologies include
 - Efficiency: Buildings and Automobiles
 - Electricity Production: Renewables, Nuclear, CCS, Grid Improvements
 - Energy Production: Biofuels, Advanced Oil and Gas Production

Lift Calibration for Energy and Climate Change Analysis

- Enhanced Efficiency:
 - Buildings and Transportation
 - Reduce IO coefficients for Industrial/Commercial energy purchases, Residential and Government Consumption
- Energy Production
 - Electricity: Reduce IO coefficients for coal consumption, raise coefficients for Natural Gas/Nuclear
 - Biofuels: Raise IO coefficients for purchases from Agriculture and Forestry sectors
 - Adjust investment spending, perhaps labor productivity / other
- Carbon Emissions
 - Calculate carbon emissions according to real output by commodity; assess carbon taxes
 - Assess impact on prices/competitiveness, effects on government revenue

LIFT - New Model Developments

	LIFT 3	LIFT 2
Commodity Sectors	121	110
Input-Output Transaction Matrix	121 x 121	110 x 110
Industries	71	65
Consumption Types	83	83
Construction Types	26	25
Equipment Purchasing Sectors	71	65
Intellectual Property Investment	✓	_
NAICS/IO Account Standards	2007	2002
NIPA Benchmark	2009	2005

Demographics Projection Model

- Work to make fertility rates endogenous link to unemployment, wages, other
- Potential to model endogenous mortality rates and net immigration
- Considering linkage of health costs to detailed age / sex projections

New Applications and Calibration

- Tune current model and projections: Energy technology / efficiency / carbon emissions
- Develop population, demographic, immigration model
- Implications of health care expenditure on survival, population, economic growth
- Evaluation of government debt sustainability

Conclusions

- LIFT 2100 model developed in 2016 and is ready for use
- Inforum has long history of long-run projections and analysis
- Ongoing efforts to improve model and extend capabilities
- More information available on web site and upon request

Additional Resources I

- See Research, Models, and Policy Analysis pages on www.Inforum.umd.edu.
- Meade, Horst, Werling, et al. (2009). The Balancing Act: Climate Change, Energy Security, and the U.S. Economy. businessroundtable.org/studies-and-reports/the-balancing-act-climate-change-energy-security-and-the-u.s.-economy.
- R. Monaco, J. Phelps. (1996). Health Care Spending and the Rest of the Economy: A Short Look at the Long Term. www.inforum.umd.edu/papers/wp/wp/1996/wp96010.pdf.

Additional Resources II

- T. Dowd, R. Monaco, J. Janoska. (1996). Effects of Future Demographic Changes on the U.S. Economy: Evidence from a Long-Term Simulation Model.

 www.inforum.umd.edu/papers/wp/wp/1996/wp96009.pdf.
- R. Monaco, J. Janoska, T. Dowd, C. Scandlen. (1996). LIFT 2050: A Framework For Making Very Long-term Economic Projections, with Illustrations. www.inforum.umd.edu/papers/wp/wp/1996/wp96001.pdf.
- Werling, Keehan, Nyhus, Heffler, Horst, Meade. (2014) The Supply Side of Health Care. www.inforum.umd.edu/services/projects/supplysideofhealthcare.html.

App en dix

Additional Resources III

